Objectives	Concrete	Pictorial	Abstract
Knows that a group of things change in quantity when something is added.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as counters, snap cubes, Numicon etc. Use visual supports such as ten frames, part whole and addition mats, with the physical objects and resources that can be manipulated.	-98 -at $8_{8} 8$ Two groups of pictures so children are able to count the total. Bar model using visuals, pictures/icons or colours. Use visual supports such as ten frames, Part-whole and addition mats with pictures/icons.	A focus on symbols and numbers to form a calculation.
Find the total number of items in two groups by counting all of them.			$5+2=7$
Says the number that is one more than a given number.			
Finds one more from a group of up to five objects, then ten objects.			part
In practical activities and discussion, beginning to use the vocabulary involved in adding.			
Using quantities and objects, they add two single digit numbers and count on to find the			\square 5 5 No expectation for children to be able to
answer.			No expectation for children to be able to record a number sentence/addition calculation

Objectives	Concrete	Pictorial	Abstract
Knows that a group of things change in quantity when something is taken away			A focus on symbols and numbers to form
Find one less from a group of five objects, then ten objects.			
Using quantities and objects, they subtract two single digit numbers and count back to find the answer.	Use toys and general classroom resources for children to physically manipulate, group/regroup.		a calculation. $10-6=4$
		or cover quantities to support subtraction.	3 $?$ 7
	Use specific maths resources such as snap cubes, Numicon, bead strings etc.		
	Use visual supports such as ten frames, part-whole and subtraction mats, with the physical objects and resources that can be manipulated.	Use visual supports such as ten frames, partwhole and bar model with pictures/icons.	* No expectation for children to be able to record a number sentence/addition calculation.

Objectives	Concrete	Pictorial	Abstract
Solve problems including doubling	Counting and other maths resources for children to make 2 equal groups. Physical and real life examples that encourage children to see the concept of doubling as adding two groups.	 Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. Halving a whole, halving a quantity of objects. Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half. Use visual supports such as halving mats and part-whole with the physical objects and resources that can be manipulated Counting and other maths resources for children to explore sharing between 3 or more	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more.	

YEAR 1 Addition

Objective / Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part- whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 8=5+35 \\ & +3=8 \end{aligned}$ Use the part- whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{gathered} 8=?+3 \\ 5+?=8 \end{gathered}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Include missing number questions: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is $7 . '$ ' 8 is 3 more than 5.'

YEAR 2 Addition

Objective／Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part，part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	Explore commutativity of addition by swapping the addends to build a fact family． Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations． \square ＋ $+1=16$ $16-1=$ \square $1+$ \square $\square=16$ 16 － \square $=1$
Using known facts		Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$

Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten. Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	$17+5=22$ Use part-whole and number line to model.	$17+5=22$ Explore related facts. Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a 2-digit number and tens			$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

Add two 2-digit numbers	His AHP喑 Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} \substack{\downarrow 2 \\ 20+5 \\ 20+40 \\ 20+7 \\ 5+7=60 \\ 60+12=72} \end{gathered}$
			Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	$\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

YEAR 3 Addition

Objective /Strategy	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	 Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping.	 Exchange ten ones for a ten. Model using numicon and place value counters.	 34 +1 7 Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	$20+5$ $20+8$ $40+$ $60+13$$=73$ $60+1$

	(10) 0 (10)(10)(10) (1) (10) (1)$46+27=73$		
Estimate the answers to questions and use inverse operations to check answers	Estimating $98+17=$? $100+20=120$	Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers: $\begin{array}{ll} 98+18=116 & 116-18=98 \\ 18+98=116 & 116-98=18 \end{array}$

YEARS 4 - 6 Addition

Objective /Strategy	Concrete	Pictorial	Abstract
Years $4-6$ Estimate and use inverse operations to check answers to a calculation		AS per Year 3	
Y4—add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet $\ddots:$ \because \because \because \because \bullet \because \ddots \ddots 7 1 5 1 \bullet Draw representations using place value grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens onts tents hundreats 00 0000 0000 00000 0 00000 00 000 000000 0000 6	

YEAR 1 SUBTRACTION			
Objective /Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $4-2=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$

Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Objective/Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part- Whole mode	Link to addition. Use part-whole model to link to the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$
Make 10	$14 — 9$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	 Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?

| Bar model |
| :--- | :--- | :--- | :--- |
| Including the |
| inverse operations. |

YEAR 2 - SUBTRACTION

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \text { 333 } \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'		Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

YEAR 3 - SUBTRACTION

Objective/ Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three digit number + ones three digit number + tens three digit number + hundreds			Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	 Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{20+7}{20+4} \\ 20+3 \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.

Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones.	Children may draw base ten or PV counters and cross off.	$\begin{array}{ccc} 728 & -582 & =146 \\ { }^{\prime \prime} & \top & 4 \\ 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$	Begin by partitioning into pv columns Then move to formal method.

YEARS 4-6SUBTRACTION			
Objective /Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase exchange

Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{aligned} & { }^{2} 8^{10} X^{1} 0^{4} \$^{1} 6 \\ & -\quad 2128 \\ & \hline 28,928 \\ & \hline \end{aligned}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} 014810,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \times 1015 \cdot 3 \mathrm{kI} 9 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Programme of Study specifies the following objectives, however it does not require the explicit teaching of the mathematical symbol of multiplication

Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples $(2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s})$	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples. $\overbrace{100100100100100100010010010}^{2} \frac{2}{2} \frac{2}{2}$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Making equal groups and counting the total.	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5 , 3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

YEAR 2 MULTIPLICATION

Children should be able to recall and use multiplication and division facts for the 2, 5 and 10 times times tables.

Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Objective / Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \quad 12=4 \times 3 \\ & \qquad \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ & \\ & \begin{array}{l} 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{array} \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables
\square

Multiply 2 digit numbers by 1 digit numbers	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100 s. $4 \times 23=?$ 표표 $4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\begin{array}{r} 10 \\ \hline 15 \\ \times \quad 6 \\ \hline \\ +\quad 6 \times 5 \\ +\quad 6 \times 10 \end{array}$ $\begin{array}{ll} 5 \times 28=? \\ \frac{T 0}{28} & \\ \times \quad 5 & \\ \hline 40 & 5 \times 8 \\ \frac{100}{140} & 5 \times 20 \\ \hline \end{array}$ Move forward to the formal written method:

Solve problems, including missing number problems.			Three times as high, eight times as long
		x $5=20$ $20 \div ?=5$	
3 hats and 4 coats, how many different			
outfits?			

YEARS 4-6 Multiplication

Objective /Strategy	Concrete	Pictorial	Abstract

Objective /Strategy	Concrete	Pictorial	Abstract
Column Multiplication for 3 and 4 digits x 1 digit.	Use place value equipment to make multiplications. It is important at this stage that they always multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Objective /Strategy	Concrete	Pictorial	Abstract

Objective/ Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. 8 shared between 2 is 4 Sharing: 12 shared between 3 is 4	12 shared between 3 is 4

YEAR 2 - Division

Objective/Strategy	Concrete	Pictorial	Abstract

YEAR 3-division

Objective/Strategy	Concrete	Pictorial	Abstract

Step 1-a remainder in the ones

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3

Check: $4 \times 61+3=247$

$$
\begin{array}{r}
\text { th hto } \\
0402 \\
\hline \begin{array}{r}
1609 \\
\frac{-8}{1}
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Step 2－a remainder in the tens

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
$\begin{array}{r} t_{0}^{\circ} \\ 2 \longdiv { 2 } \\ 2 \longdiv { 5 8 } \end{array}$	$\begin{gathered} t o \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$	$\begin{array}{r} t o \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18.

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
-4	－4	$\frac{-4}{18}$
	－18	-18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	$\begin{aligned} & \frac{h^{h+0}}{2 \longdiv { 2 7 8 }} \end{aligned}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \begin{array}{c} h+0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{array} . \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
	Divide.	Multiply \& subtract.	Drop down the next digit.
	Divide 2 into 7 . Place 3 into the quotient.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} n+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
	1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
	$\begin{gathered} n 10 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{aligned} & n+0 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & \frac{-2}{07} \\ & -6 \\ & \hline \frac{18}{18} \\ & \frac{-18}{0} \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{aligned} & h t o \\ & 2 \longdiv { 1 3 9 } \\ & \frac{278}{-2} 7 \\ & -\quad 6 \\ & \hline 18 \\ & -18 \\ & \hline 0 \end{aligned}$ There are no more digits to drop down. The quotient is 139 .

